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Abstract 
The interplay of refracted light and shadow is an important 
component of underwater scenes. Full and correct interactive 
rendering of refracted caustics remains beyond the capabilities of 
even the most recent graphics hardware. We present an interactive 
caustic-beam rendering algorithm that improves on prior methods 
in three important ways: it uses a hierarchical structure over the 
refracting object to speed culling and clamping of light beams; it 
correctly handles shadowing by objects above the water surface, 
and can eliminate computation for shadowed regions; and it 
efficiently uses GPU vertex programming to reduce the rendering 
cost for caustic beams. In addition, we present a variation to the 
algorithm using a floating point texture for scaled vector rather 
than intensity accumulation for more correct caustic appearance at 
a cost in performance. 

CCS Categories: I.3.3 [Computer Graphics]: Picture/Image 
Generation; I.3.7 [Computer Graphics]: Three-Dimensional 
Graphics and Realism—Color, Shading, Shadowing and Texture 

Keywords: Real-Time Rendering, Global Illumination, 
Illumination Volumes, Caustics, Shadows 

1 Introduction 
Caustics, the beautiful patterns created when moving water 
focuses refracted light, are a significant factor in the appearance 
of underwater scenes, but are difficult and expensive to reproduce 
correctly in interactive computer graphics. Figure 1 shows several 
examples of refractive caustics in water. Various techniques have 
been used to approximate caustics from water in interactive 
applications, but these techniques tend to be slow.  Most previous 
techniques have been confined to rendering caustics onto flat 
planes or simple height fields, and are unable to handle the 
general problem of rendering caustics onto arbitrary objects 
suspended in water. 

Another difficult aspect of refractive caustics is the interplay 
between caustics and shadows.  An object above a pool of water 

will cast a shadow on underwater objects, but the shadow will be 
irregularly shaped, since light can be refracted by the surface of 
the water into the area underneath the object.  Similarly, an object 
suspended under the water will cast an irregular shadow onto the 
ground.  No previous interactive technique includes realistic 
interactions between caustics and shadows, while still rendering 
caustics on arbitrary objects in real time. 

We present a new technique for rendering caustics from water 
which is able to render caustics onto any underwater object at 
acceptable frame rates on current graphics hardware.  Our method 
supports dynamic changes to the scene, and also provides a partial 
solution to the shadowing problem, in the case where an 
occluding object lies between the light source and the water’s 
surface.  Our work improves upon previous caustic rendering 
methods based on light beam tracing [Nishita 1994, Iwasaki et al. 
2001, 2003, Watt 1990] by introducing a hierarchical data 
structure which reduces the rendering overhead and allows 
efficient culling of beams shadowed by occluding objects between 
the water surface and the light source. 

The remainder of this paper is organized as follows: Section 2 
provides an overview of previous work related to caustic 
rendering, in both non-interactive and interactive applications, 
Section 3 describes our new rendering technique, and Section 4 
provides a performance analysis 

2 Previous Work 
Caustics are a form of specular to diffuse transport, which is most 
commonly associated with images produced by ray tracing.  
Typically, rays are traced from the light source into the scene, and 
the density of hits in a particular location is used to determine an 
estimate of the irradiance at that location.  Backward ray tracing 
was one of the earliest techniques capable of generating caustics 
[Arvo 1986], but more recently photon mapping has gained 
popularity for its ability to model a wide variety of lighting 
effects, including caustics [Jensen 1996].  Although photon 
mapping has been implemented in a modified form on a 
commercial graphics accelerator [Purcell et al. 2003], the 
technique is not yet practical for dynamic scenes, since the photon 
tracing process must be repeated whenever there is a change to the 
objects or lights.   

Wyman et al. [2003, 2004] render dynamic caustics by sampling 
the radiance in a region of space around each caustic producing 
object in their scenes, and using the sampled caustic information 
to shade nearby surfaces.  They are able to achieve interactive 
frame rates using a large shared-memory machine, but their 
technique consumes a great deal of memory and will not scale 
well to complex scenes on commercial graphics hardware.  

 

Figure 1. Three examples of refractive caustics and shadows, rendered using our interactive algorithm 
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Spherical harmonics can be used to compress the sampled caustic 
information, but because of the high frequency nature of caustics, 
many coefficients are needed.  In addition, the method uses ray-
tracing to sample the caustics from an object as a pre-process, 
which means that caustics could not be cast from deformable 
objects or moving light sources. Pre-computed radiance transfer 
[Sloan et al. 2002] can be used in a similar fashion to calculate 
light transfer functions from an object to nearby points in space, 
but it suffers from the same limitations. 

A novel technique developed by Wand and Staber [2003], allows 
interactive caustics with dynamic lighting by subdividing each 
caustic producing object into a series of sample points.  Each 
sample point projects the incoming light onto the surface of 
nearby objects, and the caustic intensity is computed by summing 
over the sample points.  The algorithm is implemented by 
computing the light from each sample point in a pixel shader, and 
filtering based on the surface curvature to prevent aliasing.  
Although Wand and Staber considered only reflective caustics, it 
is straightforward to apply their technique to refractive caustics in 
an underwater scene.  The main limitation of this method is 
scalability.  To apply the technique to our test scenes with any 
degree of accuracy, hundreds, perhaps thousands, of surface 
samples would have to be evaluated per pixel for each underwater 
object. 

Because caustics are such an important aspect of underwater 
scenes, many special purpose techniques have been developed to 
approximate refractive caustics from water in interactive 
applications.  An early example is the work of Stam [1996], who 
developed a technique that uses pre-computed, animated caustic 
textures which are projected onto the objects in the scene.  
Because the caustic patterns are computed in advance and stored 
in texture maps, caustic rendering is inexpensive, but the caustics 
will not look correct when projected onto an underwater object, 
and cannot be made to change in response to changes in the water 
surface geometry. 

Trendall [2000], in an early example of general purpose 
computation on graphics hardware, demonstrates a technique to 
calculate caustics on a flat plane analytically from a dynamic 
water surface.  Because Trendall’s technique uses an integral 
equation for caustic intensity, it cannot be easily extended to 
handle shadows.  

A more popular and general method, which has been applied to 
ocean scenes [Jensen et al. 2001, Lovisarch 2003], is to tessellate 
the water surface and project the resulting mesh onto the sea floor.  
The projected water mesh is rendered, and the contributions of the 
individual triangles to the final image are summed at each pixel.  
This is an efficient technique for rendering dynamic caustics, and 
can support displacement mapping of the receiving surface. 
However, it does not handle caustics on arbitrary objects. 

Nishita and Nakamae [1994] present a beam-tracing technique for 
rendering caustics from water, as well as shafts of light due to 
scattering from impurities in the water.  Their method is based on 
a beam tracing technique published by Watt [1990], and a 
modified version has been implemented on graphics hardware 
[Iwasaki et al. 2001].  Each triangle of the water surface is swept 
down through the water, creating a pyramid shaped light beam.  
The energy incident on the surface of the triangle travels down 
through this beam, and the intensity at any point along the beam 
can be approximated by projecting the beam onto a plane 
containing the point, and using the ratio of the area of the 
projected triangle to the area of the original triangle.  This allows 
caustics to be rendered with reasonable accuracy onto any 
underwater object, given a fine enough subdivision of the water 
surface.  The hardware implementation also introduced the use of 
a shadow map to produce shadows in the caustics from 
underwater objects, but this is only a rough approximation, since 
it does not account for the possibility of light scattering into the 
space beneath the object from another direction.   

Iwasaki et al. have published a more recent work [2003], which 
uses a different technique to allow for refraction mapping on the 
water surface.  In this new method, underwater objects are 
rendered into a series of slice images, and caustics are calculated 
by projecting the caustic beams onto the slicing planes for each 

object.  The slices are mapped onto the water surface and 
rendered using texture-based volume rendering techniques [Engel 
et al. 2001].  The use of object slices enables their new algorithm 
to handle the difficult problem of reflected or refracted images of 
nearby objects on the water surface by ray casting through the 
slices, but it also requires the caustic beams, the objects, and the 
water surface to be rendered multiple times for each object in the 
scene.  Our rendering techniques are complementary and could be 
applied to accelerate their algorithm. 

3 Our Rendering Algorithm 
Nishita et al’s illumination volumes [Nishita 1994, Iwasaki et al. 
2001, 2003], allow caustics to be projected from an arbitrary light 
source, through a dynamic polygonal surface, onto any type of 
underwater object.  The method will work regardless of the way 
the underwater object is modeled, as long as a Z-buffered 
rendering of the object surface can be produced.  Also, each light 
beam only needs to be rendered a constant number of times, 
regardless of the complexity of the objects in the scene.  Because 
it supports rendering dynamic caustics onto any type of object, 
this method is the most general way to interactively render 
refractive caustics from water, and we have adopted it as the basis 
for our work.   

3.1 Illumination Model for Caustics 
Figure 2 shows the relevant angles and vectors for caustic 
refraction of an incident light ray through water, and shining on 
an underwater object. The energy of light reaching a point p 
underwater, from a point s on a surface triangle can be expressed 
as: 

Isp = Is*T(�is, �ts)*(Fsp) 

Where: Is is the light intensity reaching point s, �is and �ts are the 
incidence and transmittance angles for a ray striking the water at 
point s, T(�is, �ts) is the Fresnel transmittance of the surface, and 
Fsp is the flux density ratio at p, which can be approximated by 
using the ratio of the area of a surface triangle containing s to the 
area of its projection onto a plane containing p.  The reflected 
radiance from p, assuming perfectly diffuse objects, can be 
approximated as: 

Ir = Robj* (Ka + � Isp*cos(�obj) ) 

Where: �obj is the angle between the object normal and the 
refracted ray, and Robj is the reflectance of the object.  The total 
illumination reaching the point is the sum of the intensity 
contributed by each point s on the water surface.  In addition, we 
add an ambient term: Ka, to account for indirect illumination due 
to diffuse interactions between objects and light scattering by 
water particles.   

3.2 Caustic Beam Rendering 
We render individual caustic beams using the same method as 
Iwasaki’s hardware implementation of illumination volumes 
[2001].  Each triangle of the water surface is projected along the 
refracted ray direction at each vertex, producing a pyramid-shaped 
light beam.  The light beam is sliced by a set of fixed, equally 
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Figure 2. Geometry of caustic refraction. 
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spaced planes.  For simplicity, our implementation always uses 
slicing planes perpendicular to the Y axis, but any set of parallel 
planes could be used.  The caustic intensity is computed at each 
slice vertex and interpolated along the length of each slice. 

Prior to rendering caustic beams, we initialize the stencil buffer to 
a reference value, and render the underwater scene with color 
outputs disabled in order to obtain depth values for each pixel. We 
then render the faces of each caustic beam to determine its effect 
on the visible points in the image. This is similar to stencil-based 
shadow volume rendering [Heidmann 1991].  For each beam, we 
compute the caustic intensity for each pixel and sum the 
intensities into a screen-sized texture. 

Each caustic beam is rendered in two passes. In the first pass, we 
increment the stencil value for counter-clockwise faces, and 
decrement for clockwise faces.  This causes the stencil value for 
each pixel to differ from the reference value if and only if the 
point under the pixel is inside the light beam.  In the second pass, 
we output the computed energy for those pixels, and reset the 
stencil value for the next beam.  Once all beams have been 
processed, the underwater objects are rendered a second time.  In 
this pass, the lighting model is evaluated using the caustic texture 
for the summation term.  Like previous implementations [Nishita 
1994, Iwasaki et al. 2001, 2003], we approximate the cosine term 
in the lighting model by computing the refracted light direction 
assuming a flat water surface. 

Because graphics hardware is beginning to support floating point 
frame buffer blending, we can use a floating-point caustic texture 
to remove the flat-water cosine approximation. Instead of 
accumulating intensities (� Isp N•Lflat), we can accumulate scaled 
caustic light vectors (N• �Isp L). Removing the flat-water cosine 
approximation has the greatest visual effect for surfaces 
perpendicular to the flat water surface. Observe the pool sides in 
Figure 3. Floating point vector accumulation incurs a frame-buffer 
bandwidth overhead relative to the simpler intensity accumulation 
of the flat-water model, which can lead to a significant 
performance penalty.  This performance penalty is analyzed in 
more detail in Section 4.  

The per-vertex calculations for each beam slice are implemented 
using the GPU.  When rendering a beam slice, we use an array of 
dummy vertices, three for each slicing plane.  Each dummy vertex 
stores the location of the slicing plane, and a vertex ID which 
maps the dummy vertex to a vertex on the surface triangle.  The 
vertices of the surface triangle are packed into constant registers, 
and used to compute the projected position and intensity for each 
dummy vertex. Using the vertex shader allows our 
implementation to exploit the parallelism available in the GPU 
vertex pipeline for better performance.  In addition, because all 
beams use a common array of dummy vertices stored in GPU 
memory, we avoid streaming large amounts of vertex data to the 
GPU for every beam, removing a potential performance 
bottleneck.   

Because beams are numerous, and are rendered one at a time, 
pixel fill rate and driver overhead are major bottlenecks for this 
algorithm.  In order to achieve interactive frame rates, view 
frustum culling must be performed to avoid rendering calls for 
invisible beams, and rendered beams must be clamped to the 
bounding boxes of the underwater objects in order to minimize 
the fill-rate demand.  As the complexity of the scene increases, 
these operations become increasingly more numerous, and their 
computational cost becomes a more important component of the 
rendering time.   

3.3 Hierarchical Beam Rendering 
In order to reduce the computational cost of caustic rendering, we 
have developed a hierarchical rendering algorithm to accelerate 
the clamping and culling operations.    

As a pre-processing step, we organize the triangles of the water 
mesh into a series of buckets, each of which covers a certain area 
of the water surface.  These buckets are each recursively split a 
pre-set number of times, producing a set of full quadtrees.  Each 
node of a quadtree stores a list of all triangles whose bottom-left 
vertex lies within the node’s designated area of the water surface.  
Although we have chosen to use a regular grid in our 
implementation, arbitrary bucket layouts could be used depending 
on the shape of the water body and the locations of potential 
occluders.   

Whenever the water geometry is updated, we compute a bounding 
volume for each leaf node by projecting the surface triangles onto 
the most distant slicing plane and computing an axis-aligned 
bounding square in the plane which encloses all of the projected 
points.  We connect the corners of this box to the corners of the 
node’s water surface area to produce a convex hull which fully 
encloses every caustic beam produced by the triangles in the node 
(Figure 5).  We refer to these convex hulls as parent beams.  After 
computing parent beams for the leaf nodes, we use them to 
recursively compute a convex hull for the intermediate nodes, 
such that each parent beam fully encloses all of its child beams, 
and therefore, all of the caustic beams owned by the parent.  The 
cost of maintaining this hierarchical structure varies depending on 
the depth of the hierarchy and the number of root buckets used, 
but we have found that it is relatively cheap compared to the cost 
of clamping, culling, and rendering.   

 

 
(a)  

(b) 

Figure 3. (a) Flat-water approximation, accumulating only caustic 
beam intensities (14.98 fps). (b) Floating point scaled vector 

accumulation (11.64 fps).   
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This hierarchical beam structure reduces the cost of beam 
clamping and culling by allowing us to avoid performing these 
operations on individual beams if a test of the parent volumes will 
suffice.  If a parent beam is found to intersect with the viewing 
frustum, we recursively test the child beams until we come to the 
leaves, at which point we test the individual caustic beams.  If any 
parent beam is completely inside or outside the frustum, we can 
skip the culling tests on its children. 

To perform beam clamping, we first test the parent beams for 
intersection with the bounding boxes of each underwater object.  
If an intersection is found, we recursively test all of its child 
beams, then clamp only those caustic beams which actually hit the 
box.  The clamping can be made even more efficient by checking 
to see if the entire parent beam is contained in the bounding box at 
any point along its length.  If this is the case, we know that every 
caustic beam must eventually strike the box, and we can clamp all 
of them to the object’s extents without further testing.    

3.4 Hierarchical Shadow Culling 
The introduction of vertex texturing in the current generation of 
graphics hardware makes it possible to improve the realism of our 
caustic renderings by using a shadow map in the vertex shader to 
detect caustic beams which are shadowed by objects above the 
water.  For each vertex of the water surface mesh, we can use the 
shadow map to determine whether the vertex is visible from the 
light’s point of view, and if it is not, then the intensity projected 
through that vertex of the light beam is set to zero.  The top half 
of Figure 4 demonstrates the increased realism that shadows can 
bring to a scene. 

   
 (a) (b) 

   
 (c) (d) 

Figure 4. Effect of shadowing on caustics. (a) Caustics without shadowing. (b) Caustics with vertex shadow map and shadow culling. (c) 
Caustic beam structure without shadow culling (d) Caustic beam structure with shadow culling. 

 
(a) 

 
(b) 

Figure 5. Hierarchical beam structure. (a) Geometry of three 
levels of hierarchy. (b) Quadtree layout for these beams. 
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Because some of the caustic beams will no longer contribute to 
the final image, we can obtain a performance boost in scenes with 
occluded caustics by using the hierarchical structure to detect 
heavily shadowed regions of the water surface, and eliminating 
the caustic beams in these regions.  Depending on the scene, this 
can significantly reduce the number of caustic beams which need 
to be rendered.  The bottom half of Figure 4 illustrates the benefits 
of shadow culling. 

Our shadow culling algorithm works by estimating the fraction of 
shadowed surface area for each node in the hierarchy.  We will 
refer to this fraction as the shadow ratio.  We define a shadowing 
tolerance Smin, which is the minimum shadow ratio at which to 
cull a leaf node.  For each node, we render the top of the parent 
beam against the shadow map with the depth test set to 
GREATER, and use hardware occlusion queries to count the 
occluded pixels.  This number is then divided by the estimated 
pixel coverage of the beam to produce the shadow ratio.  If the 
shadow ratio for a parent beam is low enough that none of its 
descendents could have a ratio greater than Smin, we assume that 
all beams have a significant visual contribution and do not test 
any further.  Otherwise, the process is repeated for each child 
node.  If any leaf nodes are found whose shadow ratio is greater 
than Smin, then the beams under this leaf are assumed to contribute 
very little to the final image and are culled.   

The accuracy of the shadows which are produced by the algorithm 
can be controlled by adjusting the value of Smin.  Lower values 

will cause more beams to be culled, which lowers the rendering 
cost per frame, but may also reduce the accuracy of the caustics 
by incorrectly culling beams which are not shadowed themselves, 
but which reside under a heavily shadowed parent.  Higher values 
of Smin can produce more accurate caustics, but will cause fewer 
beams to be culled, which means a lower performance gain.   

Shadow culling alone could be used to mimic the effect of shadow 
maps on GPUs without vertex texture support.  If the occluders 
have relatively simple shapes, convincing shadows can still be 
produced this way, given a high enough Smin value.  However, for 
a very complicated occluder such as a tree, shadow culling alone 
will almost certainly produce visual artifacts, regardless of the 
tolerance.  In these situations, vertex textures are needed to handle 
the intricate structure of the shadows.  It is worth noting, however, 
that even if some beams are culled incorrectly, the visual effects 
can often go unnoticed in a dynamic scene with animated caustics, 
and the performance boost that is gained by culling may be of 
greater value than the increased realism that would be gained by 
not culling.   

4 Performance Analysis 
We conducted a series of experiments to compare the 
performance of our hierarchical clustering algorithm to that of a 
non-hierarchical reference implementation. These tests used four 
views of our test environment.  Test scenes one, two, and three are 
shown in Figure 1, and scene four is shown in Figure 3. 

Performance (FPS) Figure 1, Left Figure 1, Center Figure 1, Right Figure 3, Top 
Reference  17.6 10.44 6.87 23.00 13.83 9.10 13.05 7.67 5.01 27.7 16.97 11.15 

Hierarchical  28.75 18.74 12.74 31.4 20.73 14.14 27.70 18.01 12.19 33.6 22.47 15.30 
Speedup (%) 63.35 79.50 85.44 36.52 49.89 55.38 112.26 134.81 143.31 21.3 32.41 37.22 

 

Table 1.  Clamping and Culling Performance.  Results for each view are in ascending order by water mesh size.  Mesh sizes, from left to 
right, are: 120x120, 160x160, and 200x200 vertices. 

 
 Figure 1, Left Figure 1, Center Figure 1, Right Figure 3 

Reference 6.51 4.57 3.33 10.75 7.15 4.98 5.51 3.31 2.19 11.51 8.37 6.20 
Hierarchical 6.85 4.89 3.58 11.98 7.98 5.17 5.86 3.50 2.25 12.55 9.39 6.46 

Shadow Culling 7.33 5.40 4.00 13.34 9.32 6.05 6.55 4.07 2.59 14.98 11.50 7.90 
Vector Accum 5.58 4.26 3.27 11.48 8.51 5.81 6.34 4.00 2.54 11.64 9.44 7.24 

 
Table 2.  Rendering Performance.  Bottom row shows framerate of hierarchical rendering with shadow culling and vector accumulation 

lighting (see Section 3.2). 
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Figure 6.  Left:  Caustic Rendering Performance.  Right: Performance Loss From Vector Accumulation.  Results order as in Tables 1 and 2.   

 



 

Page 6 of 7 

The non-hierarchical method performs clamping and culling 
operations on each caustic beam individually, while the 
hierarchical implementation uses the techniques described above.  
For each test scene, we measured the frame rates using the non-
hierarchical algorithm, the hierarchical algorithm without shadow 
culling, and the hierarchical algorithm with shadow culling.  The 
tests were conducted three times for each scene, using water mesh 
sizes of 120x120, 160x160, and 200x200 vertices.  The value of 
Smin used for shadow culling was 65%. 

The test application was developed in C++ using Direct3D 9.0c.  
The test views were rendered at a resolution of 1024 by 768 pixels 
on a PC with a 3.2 GHz Pentium 4 CPU and a NVIDIA GeForce 
6800 GPU (AGP).  In most test scenes, graphics driver overhead 
and pixel fill rate were the most significant factors in the 
rendering performance. 

4.1 Clamping and Culling Performance 
Table 1 shows the frame rates achieved by our test application 
with beam rendering calls disabled.  In these tests, all of the usual 
beam clamping and culling computations are performed, but the 
state changes and rendering commands required to actually draw 
the caustic beams are skipped.  The rest of the scene is still 
rendered, but the frame time is dominated by the beam 
processing. 

These results clearly demonstrate that our hierarchical algorithm 
can perform clamping and culling much more efficiently than a 
non-hierarchical technique. 

The performance gains for each test scene appear to be correlated 
with the fraction of the caustic beams which are visible in each 
scene.  In these test scenes, the percentages of visible beams are 
50%, 35%, 100%, and 25% (from left to right).  We attribute this 
to the fact that, in our implementation, beam-box intersection and 
clamping are much more expensive than frustum culling, and 
these operations are performed only on visible beams.  In 
addition, the first and third scenes have a larger number of visible 
underwater objects, which also increases the clamping workload.  
Scenes with a larger clamping workload will derive much more 
benefit from our hierarchical data structure.   

4.2 Caustic Rendering Performance 
Table 2 shows the frame rates achieved when rendering the 
caustics.  The results are graphed in Figure 6.  The data in these 
figures indicate that our hierarchical algorithm can yield a 
performance improvement over non-hierarchical rendering, but 
the improvement appears to degrade as the mesh size and scene 
complexity increase. 

We attribute this to the fact that driver overhead causes graphics 
hardware to perform much less efficiently when a large number of 
small rendering commands are issued, with interleaved state 
changes.  When our mesh size is increased, more beams are 
rendered, and our frame rate is dominated by the cost of 
repeatedly changing the stencil state and issuing rendering 
commands.  This eventually negates any performance 
improvement that is obtained from the hierarchical data structure.  
Future changes to the DirectX driver model may lower the cost of 
repeated state changes and reduce the effect of driver overhead on 
our rendering performance [Boyd 2003]. 

Shadow culling consistently yields an additional performance 
boost by reducing the number of beams which need to be 
rendered.  In our test scenes, the number of beams that were 
culled in the shadow culling phase was typically about ten times 
the number of occlusion tests that were performed.   

Vector accumulation lighting, because it consumes more frame 
buffer bandwidth, incurs a performance loss ranging from 3% to 
25%.  The smaller performance loss at higher mesh sizes is due to 
the fact that driver overhead starts to become a more significant 
bottleneck than pixel fill-rate.  Although it will never completely 
disappear, we expect this performance cost to be reduced as GPUs 
continue to evolve and floating point blending becomes more 
widely used. 

5 Summary, Suggestions, and Future Work 
We have presented an improved caustic rendering algorithm 
which supports fully dynamic environments, and can project 
caustics onto any type of object.  Our implementation also takes 
into account shadows in the caustics from objects above the water, 
and is able to exploit these shadows for improved performance by 
using shadow culling.   

Our performance analysis allows us to conclude that hierarchical 
clamping and culling is more efficient than a non-hierarchical 
implementation, and that our hierarchical shadow culling can 
result in a significant performance boost by eliminating the 
rendering of shadowed beams.  In addition, we have shown how 
floating point blending can be used to achieve a more accurate 
implementation of the caustic lighting model. 

There are a number of potential improvements and optimizations 
that could be attempted to make our caustic rendering system 
more robust.  Although shadow culling can provide a performance 
boost in heavily shadowed scenes, it is possible that the occlusion 
testing will result in a net performance drop in scenes with little or 
no shadowing.  A more robust implementation of our technique 
should check for this case and avoid shadow culling in situations 
where the performance gains would be minimal.  A simple 
bounding box overlap test between the projections of the water 
and the occluders in light space should be sufficient.  Depending 
on the scene and the viewpoint, occlusion culling of the 
underwater objects may also be desirable as a means of reducing 
the beam clamping workload.  It may also be possible to 
implement beam-box testing and clamping in the vertex shader, 
by packing the visible bounding boxes into shader constants and 
using data-dependent looping.  Another possibility, which will 
require further research, is to attempt to estimate the contribution 
of each visible, non-shadowed beam to the final image, and cull 
beams which contribute little or no energy.   

Another idea for future research is to apply our hierarchical 
method to shadow volume rendering.  Although this work has 
concentrated on caustic rendering, our hierarchical clamping and 
culling was, in part, inspired by a recent work on shadow volumes 
[Lloyd et al. 2004].  We believe that a hierarchical organization 
like ours could substantially improve the performance of their 
techniques in complex scenarios, such as shadows cast by a picket 
fence or the leaves on a tree. 

Other possibilities for future work include extending the 
algorithm to efficiently render reflective caustics from arbitrary 
objects, such as the canonical metal ring on a table, or developing 
a new algorithm to allow for caustics caused by multiple 
scattering events, such as by refraction through a glass ball. 
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