

Page 1 of 7

Interactive Shadowed Caustics Using Hierarchical Light Volumes
Josh Barczak * Marc Olano*

University of Maryland Baltimore County

Abstract
The interplay of refracted light and shadow is an important
component of underwater scenes. Full and correct interactive
rendering of refracted caustics remains beyond the capabilities of
even the most recent graphics hardware. We present an interactive
caustic-beam rendering algorithm that improves on prior methods
in three important ways: it uses a hierarchical structure over the
refracting object to speed culling and clamping of light beams; it
correctly handles shadowing by objects above the water surface,
and can eliminate computation for shadowed regions; and it
efficiently uses GPU vertex programming to reduce the rendering
cost for caustic beams. In addition, we present a variation to the
algorithm using a floating point texture for scaled vector rather
than intensity accumulation for more correct caustic appearance at
a cost in performance.

CCS Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, Shading, Shadowing and Texture

Keywords: Real-Time Rendering, Global Illumination,
Illumination Volumes, Caustics, Shadows

1 Introduction
Caustics, the beautiful patterns created when moving water
focuses refracted light, are a significant factor in the appearance
of underwater scenes, but are difficult and expensive to reproduce
correctly in interactive computer graphics. Figure 1 shows several
examples of refractive caustics in water. Various techniques have
been used to approximate caustics from water in interactive
applications, but these techniques tend to be slow. Most previous
techniques have been confined to rendering caustics onto flat
planes or simple height fields, and are unable to handle the
general problem of rendering caustics onto arbitrary objects
suspended in water.

Another difficult aspect of refractive caustics is the interplay
between caustics and shadows. An object above a pool of water

will cast a shadow on underwater objects, but the shadow will be
irregularly shaped, since light can be refracted by the surface of
the water into the area underneath the object. Similarly, an object
suspended under the water will cast an irregular shadow onto the
ground. No previous interactive technique includes realistic
interactions between caustics and shadows, while still rendering
caustics on arbitrary objects in real time.

We present a new technique for rendering caustics from water
which is able to render caustics onto any underwater object at
acceptable frame rates on current graphics hardware. Our method
supports dynamic changes to the scene, and also provides a partial
solution to the shadowing problem, in the case where an
occluding object lies between the light source and the water’s
surface. Our work improves upon previous caustic rendering
methods based on light beam tracing [Nishita 1994, Iwasaki et al.
2001, 2003, Watt 1990] by introducing a hierarchical data
structure which reduces the rendering overhead and allows
efficient culling of beams shadowed by occluding objects between
the water surface and the light source.

The remainder of this paper is organized as follows: Section 2
provides an overview of previous work related to caustic
rendering, in both non-interactive and interactive applications,
Section 3 describes our new rendering technique, and Section 4
provides a performance analysis

2 Previous Work
Caustics are a form of specular to diffuse transport, which is most
commonly associated with images produced by ray tracing.
Typically, rays are traced from the light source into the scene, and
the density of hits in a particular location is used to determine an
estimate of the irradiance at that location. Backward ray tracing
was one of the earliest techniques capable of generating caustics
[Arvo 1986], but more recently photon mapping has gained
popularity for its ability to model a wide variety of lighting
effects, including caustics [Jensen 1996]. Although photon
mapping has been implemented in a modified form on a
commercial graphics accelerator [Purcell et al. 2003], the
technique is not yet practical for dynamic scenes, since the photon
tracing process must be repeated whenever there is a change to the
objects or lights.

Wyman et al. [2003, 2004] render dynamic caustics by sampling
the radiance in a region of space around each caustic producing
object in their scenes, and using the sampled caustic information
to shade nearby surfaces. They are able to achieve interactive
frame rates using a large shared-memory machine, but their
technique consumes a great deal of memory and will not scale
well to complex scenes on commercial graphics hardware.

Figure 1. Three examples of refractive caustics and shadows, rendered using our interactive algorithm

 *{jbarcz1, olano}@cs.umbc.edu

Page 2 of 7

Spherical harmonics can be used to compress the sampled caustic
information, but because of the high frequency nature of caustics,
many coefficients are needed. In addition, the method uses ray-
tracing to sample the caustics from an object as a pre-process,
which means that caustics could not be cast from deformable
objects or moving light sources. Pre-computed radiance transfer
[Sloan et al. 2002] can be used in a similar fashion to calculate
light transfer functions from an object to nearby points in space,
but it suffers from the same limitations.

A novel technique developed by Wand and Staber [2003], allows
interactive caustics with dynamic lighting by subdividing each
caustic producing object into a series of sample points. Each
sample point projects the incoming light onto the surface of
nearby objects, and the caustic intensity is computed by summing
over the sample points. The algorithm is implemented by
computing the light from each sample point in a pixel shader, and
filtering based on the surface curvature to prevent aliasing.
Although Wand and Staber considered only reflective caustics, it
is straightforward to apply their technique to refractive caustics in
an underwater scene. The main limitation of this method is
scalability. To apply the technique to our test scenes with any
degree of accuracy, hundreds, perhaps thousands, of surface
samples would have to be evaluated per pixel for each underwater
object.

Because caustics are such an important aspect of underwater
scenes, many special purpose techniques have been developed to
approximate refractive caustics from water in interactive
applications. An early example is the work of Stam [1996], who
developed a technique that uses pre-computed, animated caustic
textures which are projected onto the objects in the scene.
Because the caustic patterns are computed in advance and stored
in texture maps, caustic rendering is inexpensive, but the caustics
will not look correct when projected onto an underwater object,
and cannot be made to change in response to changes in the water
surface geometry.

Trendall [2000], in an early example of general purpose
computation on graphics hardware, demonstrates a technique to
calculate caustics on a flat plane analytically from a dynamic
water surface. Because Trendall’s technique uses an integral
equation for caustic intensity, it cannot be easily extended to
handle shadows.

A more popular and general method, which has been applied to
ocean scenes [Jensen et al. 2001, Lovisarch 2003], is to tessellate
the water surface and project the resulting mesh onto the sea floor.
The projected water mesh is rendered, and the contributions of the
individual triangles to the final image are summed at each pixel.
This is an efficient technique for rendering dynamic caustics, and
can support displacement mapping of the receiving surface.
However, it does not handle caustics on arbitrary objects.

Nishita and Nakamae [1994] present a beam-tracing technique for
rendering caustics from water, as well as shafts of light due to
scattering from impurities in the water. Their method is based on
a beam tracing technique published by Watt [1990], and a
modified version has been implemented on graphics hardware
[Iwasaki et al. 2001]. Each triangle of the water surface is swept
down through the water, creating a pyramid shaped light beam.
The energy incident on the surface of the triangle travels down
through this beam, and the intensity at any point along the beam
can be approximated by projecting the beam onto a plane
containing the point, and using the ratio of the area of the
projected triangle to the area of the original triangle. This allows
caustics to be rendered with reasonable accuracy onto any
underwater object, given a fine enough subdivision of the water
surface. The hardware implementation also introduced the use of
a shadow map to produce shadows in the caustics from
underwater objects, but this is only a rough approximation, since
it does not account for the possibility of light scattering into the
space beneath the object from another direction.

Iwasaki et al. have published a more recent work [2003], which
uses a different technique to allow for refraction mapping on the
water surface. In this new method, underwater objects are
rendered into a series of slice images, and caustics are calculated
by projecting the caustic beams onto the slicing planes for each

object. The slices are mapped onto the water surface and
rendered using texture-based volume rendering techniques [Engel
et al. 2001]. The use of object slices enables their new algorithm
to handle the difficult problem of reflected or refracted images of
nearby objects on the water surface by ray casting through the
slices, but it also requires the caustic beams, the objects, and the
water surface to be rendered multiple times for each object in the
scene. Our rendering techniques are complementary and could be
applied to accelerate their algorithm.

3 Our Rendering Algorithm
Nishita et al’s illumination volumes [Nishita 1994, Iwasaki et al.
2001, 2003], allow caustics to be projected from an arbitrary light
source, through a dynamic polygonal surface, onto any type of
underwater object. The method will work regardless of the way
the underwater object is modeled, as long as a Z-buffered
rendering of the object surface can be produced. Also, each light
beam only needs to be rendered a constant number of times,
regardless of the complexity of the objects in the scene. Because
it supports rendering dynamic caustics onto any type of object,
this method is the most general way to interactively render
refractive caustics from water, and we have adopted it as the basis
for our work.

3.1 Illumination Model for Caustics
Figure 2 shows the relevant angles and vectors for caustic
refraction of an incident light ray through water, and shining on
an underwater object. The energy of light reaching a point p
underwater, from a point s on a surface triangle can be expressed
as:

Isp = Is*T(�is, �ts)*(Fsp)

Where: Is is the light intensity reaching point s, �is and �ts are the
incidence and transmittance angles for a ray striking the water at
point s, T(�is, �ts) is the Fresnel transmittance of the surface, and
Fsp is the flux density ratio at p, which can be approximated by
using the ratio of the area of a surface triangle containing s to the
area of its projection onto a plane containing p. The reflected
radiance from p, assuming perfectly diffuse objects, can be
approximated as:

Ir = Robj* (Ka + � Isp*cos(�obj))

Where: �obj is the angle between the object normal and the
refracted ray, and Robj is the reflectance of the object. The total
illumination reaching the point is the sum of the intensity
contributed by each point s on the water surface. In addition, we
add an ambient term: Ka, to account for indirect illumination due
to diffuse interactions between objects and light scattering by
water particles.

3.2 Caustic Beam Rendering
We render individual caustic beams using the same method as
Iwasaki’s hardware implementation of illumination volumes
[2001]. Each triangle of the water surface is projected along the
refracted ray direction at each vertex, producing a pyramid-shaped
light beam. The light beam is sliced by a set of fixed, equally

s

N

P
Nobj

obj

i

t

Figure 2. Geometry of caustic refraction.

Page 3 of 7

spaced planes. For simplicity, our implementation always uses
slicing planes perpendicular to the Y axis, but any set of parallel
planes could be used. The caustic intensity is computed at each
slice vertex and interpolated along the length of each slice.

Prior to rendering caustic beams, we initialize the stencil buffer to
a reference value, and render the underwater scene with color
outputs disabled in order to obtain depth values for each pixel. We
then render the faces of each caustic beam to determine its effect
on the visible points in the image. This is similar to stencil-based
shadow volume rendering [Heidmann 1991]. For each beam, we
compute the caustic intensity for each pixel and sum the
intensities into a screen-sized texture.

Each caustic beam is rendered in two passes. In the first pass, we
increment the stencil value for counter-clockwise faces, and
decrement for clockwise faces. This causes the stencil value for
each pixel to differ from the reference value if and only if the
point under the pixel is inside the light beam. In the second pass,
we output the computed energy for those pixels, and reset the
stencil value for the next beam. Once all beams have been
processed, the underwater objects are rendered a second time. In
this pass, the lighting model is evaluated using the caustic texture
for the summation term. Like previous implementations [Nishita
1994, Iwasaki et al. 2001, 2003], we approximate the cosine term
in the lighting model by computing the refracted light direction
assuming a flat water surface.

Because graphics hardware is beginning to support floating point
frame buffer blending, we can use a floating-point caustic texture
to remove the flat-water cosine approximation. Instead of
accumulating intensities (� Isp N•Lflat), we can accumulate scaled
caustic light vectors (N• �Isp L). Removing the flat-water cosine
approximation has the greatest visual effect for surfaces
perpendicular to the flat water surface. Observe the pool sides in
Figure 3. Floating point vector accumulation incurs a frame-buffer
bandwidth overhead relative to the simpler intensity accumulation
of the flat-water model, which can lead to a significant
performance penalty. This performance penalty is analyzed in
more detail in Section 4.

The per-vertex calculations for each beam slice are implemented
using the GPU. When rendering a beam slice, we use an array of
dummy vertices, three for each slicing plane. Each dummy vertex
stores the location of the slicing plane, and a vertex ID which
maps the dummy vertex to a vertex on the surface triangle. The
vertices of the surface triangle are packed into constant registers,
and used to compute the projected position and intensity for each
dummy vertex. Using the vertex shader allows our
implementation to exploit the parallelism available in the GPU
vertex pipeline for better performance. In addition, because all
beams use a common array of dummy vertices stored in GPU
memory, we avoid streaming large amounts of vertex data to the
GPU for every beam, removing a potential performance
bottleneck.

Because beams are numerous, and are rendered one at a time,
pixel fill rate and driver overhead are major bottlenecks for this
algorithm. In order to achieve interactive frame rates, view
frustum culling must be performed to avoid rendering calls for
invisible beams, and rendered beams must be clamped to the
bounding boxes of the underwater objects in order to minimize
the fill-rate demand. As the complexity of the scene increases,
these operations become increasingly more numerous, and their
computational cost becomes a more important component of the
rendering time.

3.3 Hierarchical Beam Rendering
In order to reduce the computational cost of caustic rendering, we
have developed a hierarchical rendering algorithm to accelerate
the clamping and culling operations.

As a pre-processing step, we organize the triangles of the water
mesh into a series of buckets, each of which covers a certain area
of the water surface. These buckets are each recursively split a
pre-set number of times, producing a set of full quadtrees. Each
node of a quadtree stores a list of all triangles whose bottom-left
vertex lies within the node’s designated area of the water surface.
Although we have chosen to use a regular grid in our
implementation, arbitrary bucket layouts could be used depending
on the shape of the water body and the locations of potential
occluders.

Whenever the water geometry is updated, we compute a bounding
volume for each leaf node by projecting the surface triangles onto
the most distant slicing plane and computing an axis-aligned
bounding square in the plane which encloses all of the projected
points. We connect the corners of this box to the corners of the
node’s water surface area to produce a convex hull which fully
encloses every caustic beam produced by the triangles in the node
(Figure 5). We refer to these convex hulls as parent beams. After
computing parent beams for the leaf nodes, we use them to
recursively compute a convex hull for the intermediate nodes,
such that each parent beam fully encloses all of its child beams,
and therefore, all of the caustic beams owned by the parent. The
cost of maintaining this hierarchical structure varies depending on
the depth of the hierarchy and the number of root buckets used,
but we have found that it is relatively cheap compared to the cost
of clamping, culling, and rendering.

(a)

(b)

Figure 3. (a) Flat-water approximation, accumulating only caustic
beam intensities (14.98 fps). (b) Floating point scaled vector

accumulation (11.64 fps).

Page 4 of 7

This hierarchical beam structure reduces the cost of beam
clamping and culling by allowing us to avoid performing these
operations on individual beams if a test of the parent volumes will
suffice. If a parent beam is found to intersect with the viewing
frustum, we recursively test the child beams until we come to the
leaves, at which point we test the individual caustic beams. If any
parent beam is completely inside or outside the frustum, we can
skip the culling tests on its children.

To perform beam clamping, we first test the parent beams for
intersection with the bounding boxes of each underwater object.
If an intersection is found, we recursively test all of its child
beams, then clamp only those caustic beams which actually hit the
box. The clamping can be made even more efficient by checking
to see if the entire parent beam is contained in the bounding box at
any point along its length. If this is the case, we know that every
caustic beam must eventually strike the box, and we can clamp all
of them to the object’s extents without further testing.

3.4 Hierarchical Shadow Culling
The introduction of vertex texturing in the current generation of
graphics hardware makes it possible to improve the realism of our
caustic renderings by using a shadow map in the vertex shader to
detect caustic beams which are shadowed by objects above the
water. For each vertex of the water surface mesh, we can use the
shadow map to determine whether the vertex is visible from the
light’s point of view, and if it is not, then the intensity projected
through that vertex of the light beam is set to zero. The top half
of Figure 4 demonstrates the increased realism that shadows can
bring to a scene.

 (a) (b)

 (c) (d)

Figure 4. Effect of shadowing on caustics. (a) Caustics without shadowing. (b) Caustics with vertex shadow map and shadow culling. (c)
Caustic beam structure without shadow culling (d) Caustic beam structure with shadow culling.

(a)

(b)

Figure 5. Hierarchical beam structure. (a) Geometry of three
levels of hierarchy. (b) Quadtree layout for these beams.

Page 5 of 7

Because some of the caustic beams will no longer contribute to
the final image, we can obtain a performance boost in scenes with
occluded caustics by using the hierarchical structure to detect
heavily shadowed regions of the water surface, and eliminating
the caustic beams in these regions. Depending on the scene, this
can significantly reduce the number of caustic beams which need
to be rendered. The bottom half of Figure 4 illustrates the benefits
of shadow culling.

Our shadow culling algorithm works by estimating the fraction of
shadowed surface area for each node in the hierarchy. We will
refer to this fraction as the shadow ratio. We define a shadowing
tolerance Smin, which is the minimum shadow ratio at which to
cull a leaf node. For each node, we render the top of the parent
beam against the shadow map with the depth test set to
GREATER, and use hardware occlusion queries to count the
occluded pixels. This number is then divided by the estimated
pixel coverage of the beam to produce the shadow ratio. If the
shadow ratio for a parent beam is low enough that none of its
descendents could have a ratio greater than Smin, we assume that
all beams have a significant visual contribution and do not test
any further. Otherwise, the process is repeated for each child
node. If any leaf nodes are found whose shadow ratio is greater
than Smin, then the beams under this leaf are assumed to contribute
very little to the final image and are culled.

The accuracy of the shadows which are produced by the algorithm
can be controlled by adjusting the value of Smin. Lower values

will cause more beams to be culled, which lowers the rendering
cost per frame, but may also reduce the accuracy of the caustics
by incorrectly culling beams which are not shadowed themselves,
but which reside under a heavily shadowed parent. Higher values
of Smin can produce more accurate caustics, but will cause fewer
beams to be culled, which means a lower performance gain.

Shadow culling alone could be used to mimic the effect of shadow
maps on GPUs without vertex texture support. If the occluders
have relatively simple shapes, convincing shadows can still be
produced this way, given a high enough Smin value. However, for
a very complicated occluder such as a tree, shadow culling alone
will almost certainly produce visual artifacts, regardless of the
tolerance. In these situations, vertex textures are needed to handle
the intricate structure of the shadows. It is worth noting, however,
that even if some beams are culled incorrectly, the visual effects
can often go unnoticed in a dynamic scene with animated caustics,
and the performance boost that is gained by culling may be of
greater value than the increased realism that would be gained by
not culling.

4 Performance Analysis
We conducted a series of experiments to compare the
performance of our hierarchical clustering algorithm to that of a
non-hierarchical reference implementation. These tests used four
views of our test environment. Test scenes one, two, and three are
shown in Figure 1, and scene four is shown in Figure 3.

Performance (FPS) Figure 1, Left Figure 1, Center Figure 1, Right Figure 3, Top
Reference 17.6 10.44 6.87 23.00 13.83 9.10 13.05 7.67 5.01 27.7 16.97 11.15

Hierarchical 28.75 18.74 12.74 31.4 20.73 14.14 27.70 18.01 12.19 33.6 22.47 15.30
Speedup (%) 63.35 79.50 85.44 36.52 49.89 55.38 112.26 134.81 143.31 21.3 32.41 37.22

Table 1. Clamping and Culling Performance. Results for each view are in ascending order by water mesh size. Mesh sizes, from left to
right, are: 120x120, 160x160, and 200x200 vertices.

 Figure 1, Left Figure 1, Center Figure 1, Right Figure 3

Reference 6.51 4.57 3.33 10.75 7.15 4.98 5.51 3.31 2.19 11.51 8.37 6.20
Hierarchical 6.85 4.89 3.58 11.98 7.98 5.17 5.86 3.50 2.25 12.55 9.39 6.46

Shadow Culling 7.33 5.40 4.00 13.34 9.32 6.05 6.55 4.07 2.59 14.98 11.50 7.90
Vector Accum 5.58 4.26 3.27 11.48 8.51 5.81 6.34 4.00 2.54 11.64 9.44 7.24

Table 2. Rendering Performance. Bottom row shows framerate of hierarchical rendering with shadow culling and vector accumulation

lighting (see Section 3.2).

Caustic Rendering Performance (FPS)

0

3

6

9

12

15

Ref erence Hierarchical Hierchical (Shadow Culling)

Vector Accum ulation Perform ance Loss

0

5

10

15

20

25

30

Performance Loss (%)

Figure 6. Left: Caustic Rendering Performance. Right: Performance Loss From Vector Accumulation. Results order as in Tables 1 and 2.

Page 6 of 7

The non-hierarchical method performs clamping and culling
operations on each caustic beam individually, while the
hierarchical implementation uses the techniques described above.
For each test scene, we measured the frame rates using the non-
hierarchical algorithm, the hierarchical algorithm without shadow
culling, and the hierarchical algorithm with shadow culling. The
tests were conducted three times for each scene, using water mesh
sizes of 120x120, 160x160, and 200x200 vertices. The value of
Smin used for shadow culling was 65%.

The test application was developed in C++ using Direct3D 9.0c.
The test views were rendered at a resolution of 1024 by 768 pixels
on a PC with a 3.2 GHz Pentium 4 CPU and a NVIDIA GeForce
6800 GPU (AGP). In most test scenes, graphics driver overhead
and pixel fill rate were the most significant factors in the
rendering performance.

4.1 Clamping and Culling Performance
Table 1 shows the frame rates achieved by our test application
with beam rendering calls disabled. In these tests, all of the usual
beam clamping and culling computations are performed, but the
state changes and rendering commands required to actually draw
the caustic beams are skipped. The rest of the scene is still
rendered, but the frame time is dominated by the beam
processing.

These results clearly demonstrate that our hierarchical algorithm
can perform clamping and culling much more efficiently than a
non-hierarchical technique.

The performance gains for each test scene appear to be correlated
with the fraction of the caustic beams which are visible in each
scene. In these test scenes, the percentages of visible beams are
50%, 35%, 100%, and 25% (from left to right). We attribute this
to the fact that, in our implementation, beam-box intersection and
clamping are much more expensive than frustum culling, and
these operations are performed only on visible beams. In
addition, the first and third scenes have a larger number of visible
underwater objects, which also increases the clamping workload.
Scenes with a larger clamping workload will derive much more
benefit from our hierarchical data structure.

4.2 Caustic Rendering Performance
Table 2 shows the frame rates achieved when rendering the
caustics. The results are graphed in Figure 6. The data in these
figures indicate that our hierarchical algorithm can yield a
performance improvement over non-hierarchical rendering, but
the improvement appears to degrade as the mesh size and scene
complexity increase.

We attribute this to the fact that driver overhead causes graphics
hardware to perform much less efficiently when a large number of
small rendering commands are issued, with interleaved state
changes. When our mesh size is increased, more beams are
rendered, and our frame rate is dominated by the cost of
repeatedly changing the stencil state and issuing rendering
commands. This eventually negates any performance
improvement that is obtained from the hierarchical data structure.
Future changes to the DirectX driver model may lower the cost of
repeated state changes and reduce the effect of driver overhead on
our rendering performance [Boyd 2003].

Shadow culling consistently yields an additional performance
boost by reducing the number of beams which need to be
rendered. In our test scenes, the number of beams that were
culled in the shadow culling phase was typically about ten times
the number of occlusion tests that were performed.

Vector accumulation lighting, because it consumes more frame
buffer bandwidth, incurs a performance loss ranging from 3% to
25%. The smaller performance loss at higher mesh sizes is due to
the fact that driver overhead starts to become a more significant
bottleneck than pixel fill-rate. Although it will never completely
disappear, we expect this performance cost to be reduced as GPUs
continue to evolve and floating point blending becomes more
widely used.

5 Summary, Suggestions, and Future Work
We have presented an improved caustic rendering algorithm
which supports fully dynamic environments, and can project
caustics onto any type of object. Our implementation also takes
into account shadows in the caustics from objects above the water,
and is able to exploit these shadows for improved performance by
using shadow culling.

Our performance analysis allows us to conclude that hierarchical
clamping and culling is more efficient than a non-hierarchical
implementation, and that our hierarchical shadow culling can
result in a significant performance boost by eliminating the
rendering of shadowed beams. In addition, we have shown how
floating point blending can be used to achieve a more accurate
implementation of the caustic lighting model.

There are a number of potential improvements and optimizations
that could be attempted to make our caustic rendering system
more robust. Although shadow culling can provide a performance
boost in heavily shadowed scenes, it is possible that the occlusion
testing will result in a net performance drop in scenes with little or
no shadowing. A more robust implementation of our technique
should check for this case and avoid shadow culling in situations
where the performance gains would be minimal. A simple
bounding box overlap test between the projections of the water
and the occluders in light space should be sufficient. Depending
on the scene and the viewpoint, occlusion culling of the
underwater objects may also be desirable as a means of reducing
the beam clamping workload. It may also be possible to
implement beam-box testing and clamping in the vertex shader,
by packing the visible bounding boxes into shader constants and
using data-dependent looping. Another possibility, which will
require further research, is to attempt to estimate the contribution
of each visible, non-shadowed beam to the final image, and cull
beams which contribute little or no energy.

Another idea for future research is to apply our hierarchical
method to shadow volume rendering. Although this work has
concentrated on caustic rendering, our hierarchical clamping and
culling was, in part, inspired by a recent work on shadow volumes
[Lloyd et al. 2004]. We believe that a hierarchical organization
like ours could substantially improve the performance of their
techniques in complex scenarios, such as shadows cast by a picket
fence or the leaves on a tree.

Other possibilities for future work include extending the
algorithm to efficiently render reflective caustics from arbitrary
objects, such as the canonical metal ring on a table, or developing
a new algorithm to allow for caustics caused by multiple
scattering events, such as by refraction through a glass ball.

6 Acknowledgements
Removed for review.

7 References

ARVO, J. Backward Ray Tracing, Developments in Ray Tracing,
SIGGRAPH `86 Course Notes, Volume 12, August 1986.

BOYD, CHAS. Future Features. Presented at Microsoft Meltdown 2003.
Notes online: http://www.microsoft.com

ENGEL, K., KRAUS, M. ERTL, T., High Quality Pre-Integrated Volume
Rendering Using Hardware-Accelerated Pixel Shading. Graphics
Hardware 2001, pp. 9 - 17.

HEIDMANN, T. Real Shadows, Real Time. In Iris Universe, vol. 18,
1991. Silicon Graphics, Inc., pp. 23 - 31.

IWASAKI, K., DOBASHI, Y., NISHITA, T. Efficient Rendering of
Optical Effects within Water Using Graphics Hardware. Pacific Graphics
2001, pp. 374--383, 2001.

IWASAKI, K. DOBASHI, Y., NISHITA, T. A Fast Rendering Method
for Reflective and Refractive Caustics due to Water Surfaces. Computer
Graphics Forum (Eurographics 2003), 25(3), September 2003.

Page 7 of 7

JENSEN, H.W. Global Illumination using Photon Maps. In Rendering
Techniques '96. pp. 21-30, Springer-Verlag, 1996.

JENSEN, L. S., GOLIAS, R. Deep Water Animation and Rendering.
Presented at Game Developer’s Conference Europe 2001.

LOVISARCH, J. Complex Water Effects at Interactive Frame Rates. The
11th Annual Conference on Computer Graphics, Visualization, and
Computer Vision, 2003.

LLOYD B., WENDT J., GOVINDARAJU N.,MANOCHA D.: CC
shadow volumes. In Proceedings of the Eurographics Symposium on
Rendering, 2004.

NISHITA, T. NAKAMAE, E. Method of Displaying Optical Effects
within Water using Accumulation Buffer,” Proc. SIGGRAPH’ 94, 1994,
pp.373-380.

PURCELL, T.J. DONNER, C. CAMMARANO, M. JENSEN, H.W.
Hanrahan, P. Photon Mapping on Programmable Graphics Hardware
Graphics Hardware 2003, pages 41-50, San Diego, July 2003.

SLOAN, P.P, KAUTZ, J, SNYDER, J. Precomputed Radiance Transfer
for Interactive Rendering in Dynamic, Low Frequency Lighting
Environments. Proceedings of the 29th annual conference on Computer
graphics and interactive techniques. pp. 527-536, San Antonio, 2002.

STAM, J. Random caustics: Natural Textures and Wave theory revisited.
ACM SIGGRAPH 96 Visual Proceedings pp. 150, 1996.

TRENDALL, C., STEWART, A.J.: General calculations using graphics
hardware, with application to interactive caustics. In Rendering
Techniques 2000, 287-298, Springer, 2000.

WAND, M. STABER, W. Real-Time Caustics. Computer Graphics
Forum (Eurographics 2003), 25(3), September 2003

WATT, M. Light-Water Interaction using Backward Beam Tracing. Proc.
SIGGRAPH’90, 1990, pp.377-385.

WYMAN, C. HANSEN, C. SHIRLEY, P. Interactive Ray-Traced
Caustics. University of Utah Tech. Report, April 23, 2003.

WYMAN, C. HANSEN, C. SHIRLEY, P. Interactive Caustics Using
Local Pre-Computed Irradiance. Proceedings of the 2004 Pacific
Conference on Computer Graphics and Applications. 143-151.

